

ZENONE Elettronica S.r.I. Via Nazionale Pianopantano 83036 Mirabella Eclano (AV) Tel. +39 0825449171 Fax +39 0825407907

# DC Power Supplies AL3000 series User's manual

Release 04, February 2015

| Firmware version: | V1.25 |
|-------------------|-------|
| DSP version:      | V140  |

This manual is integrant and essential to the product. Read carefully and completely the instructions and the warnings herein, they will provide important information regarding safety of operation and maintenance.

This equipment must be used only for the purpose for which has been designed. Any other utilization is improper and therefore potentially dangerous. The manufacturer is not responsible for possible damages caused by improper, incorrect and unreasonable utilization of this equipment.

Any intervention on the equipment, that would cause a change in the structure or in the cycle of operation, must be performed or authorized by the technical department of Zenone Elettronica.

### ZENONE Elettronica S.r.l.

Via Nazionale Pianopantano 83036 Mirabella Eclano (AV) Tel. +39 0825449171 Fax +39 0825407907 www.zenoneelettronica.it info@zenoneelettronica.it

## Attention

This manual provides all the necessary information regarding the mode of operation of AL3000 and AL3000R power supplies series. For the correct use of this specific equipment it is recommended to refer to the characteristics data sheet of the power supply, which is an integral part of this manual.

(Regenerative)<sup>1</sup> bidirectional Power Supply AL 3000R series



MUGL Page 2 of 51 rev. 04 February 2015

The power supplies AL3000 and AL3000R series are fast AC/DC static converters with double conversion and IGBT technology under microprocessor control. They supply the load with voltage or current at the value that has been set regardless of the inpedance<sup>2)</sup> value and the mains fluctuations, they can also draw in energy from the load and put it on the mains net. They are particularly suited to users with high dynamic needs.

The information about voltage and current supplied is shown by means of 7 segments displays.

They can be controlled by external signals.

They are equipped with RS485 serial interface for diagnostics and parameters setting.

1) R model

2) in current control mode

#### **Product presentation**

According to the output power, the equipment can be assembled in: table rack recessed rack metal cabinet

Control interface



#### commands and connections

voltage setting command and visualization: current setting command and visualization: logical command for output-on: selection local/remote commands: line breaker: RS485 serial interface: mains supply:

outputs:

emergency input: auxiliary inputs/outputs on front panel on front panel from serial interface on front panel from cable on the back side (rack version) on terminal blocks inside the cabinet (heavy duty cabinet version) on front panel jacks or bars (rack version) on terminal blocks inside the cabinet (metal cabinet version) on front panel on front panel on front panel

## Front Panel



|                   | 2)* |
|-------------------|-----|
| Emergency<br>Knob | МСВ |
|                   |     |

## Introduction

Thank you for choosing our product. We invite you to read this manual thoroughly because here you can find the technical characteristics and all the necessary information for using this equipment correctly.

The information contained in this document is subject to change without notice and it is expected to be updated exclusively for the product for which is provided.

ZENONE ELETTRONICA is not liable for technical error, printing error or omissions that might be encountered in this manual; neither is responsible for accidental or consequential damages caused by the use of its product.

This guide provides specific information related only to the mentioned products. No part of this manual may be reproduced in any form or by any means without our written consent.

The software herein described is provided with end user license, unless otherwise specified.

This technical document version voids and replaces all previous versions.

The products cited in this document could be trademarks and/or registered mark of respective manufactures.

### Summary



#### MUGL Page 4 of 51 rev. 04 February 2015

| 1.3   | Compliance declaration                                                                                           | . 7 |
|-------|------------------------------------------------------------------------------------------------------------------|-----|
| ldent | ification label                                                                                                  | . 8 |
| 2. Pr | eliminary operations                                                                                             | 9   |
| 2.1   | Working environment                                                                                              | . 9 |
| 2.2   | Precautions                                                                                                      | . 9 |
| Emer  | gency circuit                                                                                                    | 10  |
| 2.4   | Switching the equipment on                                                                                       | 10  |
| 2.5   | Regeneration(only AL3000R models)                                                                                | 10  |
| 2.6   | Regenerator error conditions                                                                                     | 11  |
| 2.7   | Regenerator serial port                                                                                          | 12  |
| 2.8   | Regenerator functional diagram (only AL3000R models)                                                             | 12  |
| 3. In | puts / Auxiliary outputs                                                                                         | 13  |
| 3.1   | sensing                                                                                                          | 13  |
| 3.2   | Inputs                                                                                                           | 14  |
| 3.3   | Outputs                                                                                                          | 14  |
| 3.4   | Communication port                                                                                               | 14  |
| 4. Pc | wer output                                                                                                       | 15  |
| 4.1   | Command type selection                                                                                           | 15  |
| 4.2   | Starting the output of power                                                                                     | 15  |
| 4.3   | Setting the working scale (If present)                                                                           | 15  |
| 4.4   | Setting the voltage and current values                                                                           | 16  |
| 4.5   | Setting the simulated resistance                                                                                 | 16  |
| 4.6   | Maximum power limitation                                                                                         | 16  |
| 4.7   | Ramps up and down                                                                                                | 16  |
| 4.8   | Separate control of the current limits (supply / absorption)                                                     | 17  |
| 4.9   | Visualization of values entered                                                                                  | 17  |
| 4.10  | Visualization of measurements                                                                                    | 17  |
| 4.11  | Booster mode                                                                                                     | 17  |
| 5. M  | aintenance instructions                                                                                          | 18  |
| 6. Ex | cternal connections                                                                                              | 19  |
| 6.1   | MAIN connections                                                                                                 | 19  |
| 6.2   | DB15 I/O connections                                                                                             | 19  |
| 6.3   | DB15 RS485 connection                                                                                            | 20  |
| 6.4   | DB15 analog connections                                                                                          | 21  |
| 6.5   | Master/Slave connections                                                                                         | 22  |
| 7 Fr  | ont panel indications                                                                                            | 23  |
| 2 Fr  | one panet indeations for a second s | 21  |
|       | ror und judits signals                                                                                           | 27  |
| 7. 00 | onverter alagram                                                                                                 | 20  |
| 8. Co | ontrol system                                                                                                    | 26  |
| 9.1   | Control system block diagram                                                                                     | 26  |
| 9.2   | Control system description                                                                                       | 27  |
| 9.3   | Parameters definition and function                                                                               | 28  |
| 9.4   | Fine-tuning procedure for the control system                                                                     | 29  |
| 9.5   | I echnique for fine tuning the loops                                                                             | 30  |
| 9. PV | WMutil Software                                                                                                  | 33  |
| 10.   | AL Manager software                                                                                              | 38  |
| 10.1  | Software installation                                                                                            | 38  |
| 10.2  | Run software                                                                                                     | 38  |
| 10.3  | Change address                                                                                                   | 40  |
| 14.4  | Remote control                                                                                                   | 41  |
| 11.   | Communication protocol                                                                                           | 44  |
|       | -                                                                                                                |     |



# 1. Preface

# 1.1 How to use and understand the instructions provided in this manual

In this manual have been used conventional keys to simplify and standardize the utilization and the control of our generators.

In this manual you can find also functions that might not be present on the equipment you have purchased; nevertheless proper information will tell you about eventual limitations.

This solution has been chosen for clarity and to better evaluate the functional characteristics available on all our products.

# 1.2 Safety instructions

The following notes or graphic symbols list a series of instructions essential for the correct use of the equipments. Such information could be found, in graphic form, also on the equipment or used in the manual to focus the attention on the specific issue. It is highly recommended to read such instructions carefully before equipment installation.

Do not install the equipment in environments with temperatures different from those allowed

Do not expose the equipment to direct sun light

Do not pour any kind of liquids on the Equipment. In case of fire, use foam, CO2 or dry chemicals fire-extinguishers



MUGL Page 6 of 51 rev. 04 February 2015

### **Attention**



The lightning symbol within a triangle is a warning symbol that indicates the presence of "dangerous voltages" inside the equipment with risk of electric shock.



The exclamation mark within a triangle is a caution symbol that indicates the presence of important additional information for the correct use of the equipment.



The empty triangle it is a caution symbol that indicates a danger of equipment damage if improperly used.



The text that follows this symbol gives information, recommendations or other particular instructions for the correct operation of the equipment.



The text that follows this symbol gives information, recommendations or other particular instructions in order to avoid danger and/or injury to personnel.



A proper disposal of the shipment packing is recommended.



MUGL Page 7 of 51 rev. 04 February 2015

### 1.3 Compliance declaration



MANUFACTURER DECLARATION OF CONFORMITY

The Zenone Elettronica Power Supplies :

#### AL3000 and AL3000R

are herewith confirmed to comply with the requirements set out in the Council Directive on the Approximation of the Law of Member States relating to:

- Electromagnetic Compatibility, Directive 2004/108/EEC
- EN 61000-6-1 CEI EN 61000-6-1 (2° ed. 2007-10)Electromagnetic compatibility (EMC) - Part 6-1: Generic standards - Immunity for residential, commercial and light-industrial environments "
- EN 61000-6-3 CEI EN 61000-6-3 (2° ed. 2007-11)
   Electromagnetic compatibility (EMC) Part 6-3: Generic standards Emission standard for residential, commercial and light-industrial environments

EN 61326-1 :2006 Electrical equipment for measurement, control and laboratory use - EMC requirements - Part 1: General requirements

- Low Voltage Equipment Directive (2006/95/EEC) and EN61010-1 ("Safety of Electrical Measuring Apparatus")

Mirabella 01-03-2011

Zenone Eletrronica S.r.l.

Luigi Zenone

Copyright Acknowledgement: EN publications are subject to the Copyright of IEC.



MUGL Page 8 of 51 rev. 04 February 2015

### Identification label

Each equipment is identified by the following label.

We invite you to consider the data shown in it as essential for product traceability, and to communicate them for eventual request for assistance.

|                                |               | RONICA<br>IAZIONE<br>NTAZIONE |
|--------------------------------|---------------|-------------------------------|
| Model                          | ver.          |                               |
| Serial No                      |               |                               |
| Vin                            |               |                               |
| Pin                            |               | -                             |
| Scale                          | _             | Ø                             |
| Firmware                       | ver.          | 1-07                          |
| Serial address                 |               |                               |
| date of calibration / delivery | (             | . E                           |
| mod. INF 007                   | made in italy |                               |



MUGL Page 9 of 51 rev. 04 February 2015

# 2. Preliminary operations

2.1 Working environment

The Power Supply is designed for indoor use.

🗱 +5°C° 🔆 +40°C



Place the device on a suitable support or on a plane surface for good stability. Be sure that proper ventilation is allowed and no objects obstruct the ventilation openings.

### 2.2 Precautions



Operate the equipment at its rated mains voltage, on earthed outlet only. Fasten suitable cables or bars of adequate section on the output bolts, calculated on the bases of equipment functional characteristics.



<u>WARNING</u>: Power connections can generate high temperature spots, that could cause burnings.



<u>WARNING</u>: All standard power supplies are delivered with output FLOATING, not connected to any potential (unless otherwise specified); at the moment of installation <u>MUST BE CONNECTED TO GND OR TO ANY</u> <u>OTHER POTENTIAL</u>. Maximum allowed voltage on the output bolts, when not connected to earth, is 800Vdc. If you use 2 AL in Series and the sum of the output voltage of the ALs in greater than 800Vdc, connect the middle point of series circuit to ground.



If necessary connect eventual protection devices (differential relay, isolation control relay, etc.)



<u>WARNING</u>: This equipment puts energy into the mains net, if power to the equipment is supplied from an external source (batteries, independent generator, etc.), make sure to have adequate protection elements complying with local actual regulations, and eventual authorizations from the energy supplier agency.



MUGL Page 10 of 51 rev. 04 February 2015

#### Emergency circuit

The AL3000 series is equipped with an emergency circuit that provides to opening the main breaker

The opening condition are:

- Pressing the emergency button
- Opening of doors
- Main power failure
- Opening external circuit



The emergency circuit is always powered, even when the main breaker is off

#### 2.4 Switching the equipment on

Connect the power supply to the power mains, *it is recommended to follow the instructions given on the equipment (or in the attached sheet) regarding voltage, frequency and earth connection,* then turn on the power switch, that could be located on the back panel or by the cabinet side depending on the type of equipment. In some models the power-on command can be part of an external power supply frame. In some cases the integrated console, keyboard/display, can be connected to the cabinet by means of an external cable.

At system power-on an self-diagnostic routine tests the most important equipment functionalities and detects eventual faults (the information are visible with the proper software).

In case of failure or malfunctions, we must be informed in advance before sending the equipment to our laboratories.

#### 2.5 Regeneration(only AL3000R models)

The AL3000R power supply series are bidirectional devices, as a matter of fact they can either supply energy to the load or absorb energy from it; the energy is taken from or is put on the power mains. This function is accomplished through an extra converter called REGENERATOR.

In fact it will adjust the DC voltage on an intermediate bus taking it or putting it back into the network, providing also to put in phase the absorption and the regeneration so to guaranty a PF >0.95 at Pn.

According to the model, the regenerator block can be either internal to the equipment or external in a separate unit. The regenerator block, in normal mains network condition, does not need any setting or adjusting because it works autonomously controlling the BUS voltage, in some special cases it might be necessary to touch up some control parameters using the software PWMutil. The power that the equipment is capable to draw from the load is the same that is capable to supply. The regenerator has its own electronics with microprocessor that provides the energy management and the monitoring of all alarms and system parameters.



#### 2.6 Regenerator error conditions

Under error conditions, the regenerator stops the operation and signals the failure by display on the cards . The cause of the fault can be visualized by error code or means of the PWMutil program connecting it to the appropriate serial port on the regenerator.

| signal | Type error         | Remedy |
|--------|--------------------|--------|
| 1      | DC overvoltage     |        |
| 2      | DC undervoltage    |        |
| 3      | Over temperature   |        |
| 4      | IGBT Error (FAULT) |        |
| 5      | Precharge error    |        |
| 6      | Current limitat    |        |
| 7      | NTC error          |        |
| 8      | CKS error          |        |
| 9      | AC overvoltage     |        |
| Α      | AC undervoltage    |        |
| В      | HI frequency       |        |
| С      | LOW frequency      |        |
| D      | ZC missing         |        |
| E      | Feedback error     |        |
| 0      | Slave T.OUT        |        |



MUGL Page 12 of 51 rev. 04 February 2015

### 2.7 Regenerator serial port

The regenerator is equipped with standard RS485 serial port communication with rate fixed at 9600



### 2.8 Regenerator functional diagram (only AL3000R models)





# 3. Inputs / Auxiliary outputs

#### 3.1 sensing



### Sensing circuit diagram

The sensing circuit has internally resistors that link the senses to the main output in order to prevent the AL3000 to go to its maximal voltage when the sense line is broken or accidentally removed.

The resistors are sized that If the sense is broken or removed, the output voltage result:



(Set output voltage X 1.1) circa

If the sensing is reversed the AL3000 will not started and can break the sense circuit.



MUGL Page 14 of 51 rev. 04 February 2015

### 3.2 Inputs

The AL 3000 power supplies are equipped with some inputs for the remote control.

| function        | Description                                                                                                                                  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Emergency       | NC contact with no voltage, its opening causes the immediate disengagement<br>of the line breaker disconnecting the equipment from the mains |
| on - off        | NO contact with no voltage, allows to start the power supply from a remote command                                                           |
| Scale           | NO contact with no voltage, allows to select the 2 <sup>nd</sup> scale (if present).                                                         |
| Voltage command | Analog input 0 $\div$ 10V, remote command for the output voltage 0 $\div$ 100%                                                               |
| Current command | Analog input 0 ÷ 10V, remote command for the output current 0 ÷ 100%                                                                         |
| Master/Slave    | To connect two AL3000 in parallel, one as master and the other as slave.                                                                     |
| connectors      |                                                                                                                                              |

#### 3.3 Outputs

The AL 3000 power supplies are equipped with some outputs for remote signaling.

| function | description                                     |
|----------|-------------------------------------------------|
| Run/stop | PNP digital output, signaling for output on/off |
|          | Max 30V 0,5A                                    |
| Alarm    | PNP digital output, fault signaling             |
|          | Max 30V 0,5A                                    |
|          |                                                 |
|          |                                                 |

#### 3.4 Communication port

The power supply is equipped with a RS484 communication port which allows to connect a PC for some parameters setting and for the alarm register reading. **The Baud Rate is the transfer speed and is set at 9600.** 



# 4. Power output

4.1 Command type selection

The selection of the command type:

- Front panel
- analog or digital inputs
- serial port

can be done via serial link by means of "AL Manager" software.

### 4.2 Starting the output of power

After the preliminary operations, connecting the equipment to the mains and to an eventual load, have been done it's possible to turn on the power supply acting on the main switch.



Note: the main switch will not activate if the emergency circuit is open or the emergency push-button is pressed.

Once the equipment is turned on it's possible to start the output of power in following ways:

- With local command; acting on the on-off push-button.
- With remote command; activating the proper input.
- With command from serial port; entering the appropriate string.

Under these conditions the power supply will take immediately the voltage and current values set.

### 4.3 Setting the working scale (If present)

The AL3000 may have two scale. The setting can be done:

- With the front panel knob
- With remote command; activating the proper input.
- With command from serial port; entering the appropriate string.

It can be set only in "OFF". Changing it during the "ON" has no effect till the "OFF".



MUGL Page 16 of 51 rev. 04 February 2015

#### 4.4 Setting the voltage and current values

The setting of voltage and current output can be done:

- With local command; by means of the potentiometers on the front panel
- With remote command; by means of analog signal 0 ÷ 10V
- With command from serial port; by means of appropriate strings



Note: some particular settings are possible only by means of command from serial port

#### 4.5 Setting the simulated resistance

The power supply can simulate a resistance in the output such that given a set voltage V:

The output voltage is dynamically reduced by the value  $\underline{R (set) \times I (circulating)}$  in case of power output, is dynamically increased by the value  $\underline{R (set) \times I (circulating)}$  in case of absorption.

The resistance setting is expressed in OHM with respect to the maximum value and has a 1mOHM resolution. It can be done through the analog input (if selected) or through a serial string.

If resistance is selected on analog input, is possible to set the maximum value corresponding at 10V by software "GESMD"



Note: with simulated resistance and some types of reactive loads instabilities might be triggered.

#### 4.6 Maximum power limitation

The power supply can work with constant power operation. To use this function first adjust voltage and current limits within which you want to work, then set the value of maximum power output.

In these conditions when the load will require more power than that set, the voltage will be automatically decreased so that the  $P(out) \le P(set)$ . In the case of regeneration the voltage is increased.

The setting of power is expressed in W with respect to the value of the specification sheet and has a resolution of 1W. It can be done through analog input (if selected) or through serial string.

#### 4.7 Ramps up and down

Ramps up and down allow a "sweet" start of the output voltage avoiding overshoot.



MUGL Page 17 of 51 rev. 04 February 2015

Ramps can be set at "0" or from 100mS up to 10S. Ramps have effect only during the transition OFF-ON. The setting of ramps can be done through serial interface.

### 4.8 Separate control of the current limits (supply / absorption)

You can independently set the maximum limits of positive and negative current. In this way the power supply will follow the current limitation set by the potentiometer or other input up to the maximum limit set for this polarity, for any other value over the limit the current will be cut to the limit.

This function is used to set profiles of current asymmetrical between supply and absorption.

The two parameters are settable by serial link.

#### 4.9 Visualization of values entered

In stand-by it's possible to visualize on the displays the voltage and current values simply pressing the "F1" push-button

"F1" pressed = visualization of voltage and current entered

"F1" released = off

#### 4.10 Visualization of measurements

While the output is on the power supply shows on the displays the voltage and current outputs.

Pressing "F1" it's possible to visualize voltage and current setting.

#### 4.11 Booster mode

The output voltage of the device can be set by the front-panel knob, an external analog signal (see 6.4), a serial command or by a further external signal 0-10V, applied on some pins of the Slave-in connector. This one is applied direct on the PWM modulator and can take advantage of the full dynamic of the control, unlike the DB15 analog signal that are processed by the digital board and then applied to the modulator. This function can be set by the relative RS485 command.

| Slave-in pins | Usage                                                       |
|---------------|-------------------------------------------------------------|
| 1             | Control signal 0-10V                                        |
| 2             | Control signal return (connect to 3-GND at the source ends) |
| 3             | Gnd                                                         |



MUGL Page 18 of 51 rev. 04 February 2015

# 5. Maintenance instructions

- Check periodically the air vents, clean them or change the filter;
- Check the fans efficiency.
- Check periodically the bolts of the connections between the power outputs and the external circuit under test.



# 6. External connections

### 6.1 MAIN connections



#### 6.2 DB15 I/O connections

DB15 Pin Out I/O section



Max current sink from each input: 4mA@24Vdc

Max current for each output: 500mA

#### I/O section

The I/O section of the interface connector is made of:

- 2 Inputs "PNP" type at 24V (Pin 1 and 2)
- 2 outputs "PNP" type at 24V (Pin 11 and 12)



MUGL Page 20 of 51 rev. 04 February 2015

- 1 24V supply output limited at 100 mA max
- 2 Pins assigned for a 24V supply (4=GND e 10=VCC).

The inputs have the following function:

- Input 1: Allows to START the output supply
- Input 2: Allows to select the working scale (if present).
- Input "Emergency": normally closed to the common of 24V. When opened causes the disengagement of the line breaker.

The outputs have the following function:

- Output 1: Active when the power output is on.
- Output 2: Active in case of fault.

#### 6.3 DB15 RS485 connection



#### RS485 section

The RS485 section of the interface connector is made up of pin "A" and "B" of the RS485 interface and of a Ground pin. For a proper functioning of the serial communication it's suggested to insert in a point of the line two resistance of 1K ohm connected as in the diagram.



#### 6.4 DB15 analog connections



#### ANALOG section

The Analog section of the interface connector is made of pin:

- AIN1\_P and AIN1\_N of the Analog input 1 (Pin 14 and 7)
- AIN2\_P and AIN2\_N of the Analog input 2 (Pin 15 and 8)
- Reference ground GND (Pin 6)

They are two balanced inputs that can take a maximum voltage of +/-10V with respect to GND.

Their function, when enabled by appropriate command via RS485, is to set the Voltage or Resistance (Input 1) and the Current or Power Limit (Input 2).



#### 6.5 Master/Slave connections



By connecting the MASTER-OUT connector of the device to the SLAVE-IN connector of another AL3000 with a 1 to 1 cable, and connecting the power outs (Plus and Minus) together, there is the possibility to use both devices as one. In other words, by setting the voltage on the first device (Master) and then starting it, the second device (Slave) starts in the same time automatically. The output voltage is controlled by the Master and current will be the sum of the current of both devices.

In the current-limit mode, the total output current will be the value set on the Master plus the Slave current. For example: if we set the current limit on the Master at 50% of f.s. value, the Slave current will be the 50% of its own current f.s.

On the front panel of the Slave device, in off condition, the left display indicate "SLA" and the START button is disable. In On condition (Start by the master), the display indicate the Slave voltage and current measured.

In some devices, there is a couple of connectors, one for the signals and the other for the analog reference signal:



In this case two cables 1-1, one 8 poles and the other 6 poles, are used for the masterslave function.



MUGL Page 23 of 51 rev. 04 February 2015

# 7 Front panel indications

The front panel displays indicate:

| OFF |  |
|-----|--|
| SLA |  |

When the device is off

signal (Not in all devices).

DIS

Master. When the device is Disabled and OFF, waiting for an external Enable

When the device is in Slave mode and OFF, under control of a

FAIL X YY

When the device is in error and OFF. Where: X = DSP board number (Normally 1, may be more on some devices)

and

| Y  | Meaning            |
|----|--------------------|
| 1  | DC - Overvoltage   |
| 2  | DC - Undervoltage  |
| 3  | Overtemperature    |
| 4  | Hardware FAULT     |
| 5  | Precharge failure  |
| 6  | Overcurrent        |
| 7  | NTC Failure        |
| 8  | Chacksum error     |
| 14 | Feedback error     |
| 15 | SUBdevices error   |
| 16 | DSP610 timed out   |
| 99 | DSP not responding |

When the device OFF, due to Power or Current Overload



When the device is OFF, and a Subdevice has a warning (*Not in all devices*).

When the device is ON, where VVV=Voltage measure, and a Subdevice has a warning (*Not in all devices*).

### Current mode

A lamp on the front panel (if present) indicate that the device is working in current limitation mode, not in voltage control.



# 8 Error and faults signals

The converters are equipped with self-diagnosis routine, in case of anomalous event they stop the power output and show an error message.

| Signal     | Cause                                                                              | Remedy                                                                                                                       |
|------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| DSP X FAIL | Communication error between<br>the central processor and the<br>DSP shown by nr. X | Shut off and turn on the equipment; if the error remains contact the assistance                                              |
| FAIL XX    | Generic error                                                                      | See the display on cards or connect a PC to<br>the equipment and by means of the<br>software "PWMutil" check the table below |

| signal | Type error         | Remedy                                                           |
|--------|--------------------|------------------------------------------------------------------|
| 1      | DC overvoltage     | Check the mains voltage, the presence of all three phases and    |
|        |                    | that the regenerator works properly.                             |
| 2      | DC undervoltage    | Check the mains voltage, the presence of all three phases and    |
|        |                    | that the regenerator works properly.                             |
| 3      | Over temperature   | Shut off the equipment and wait a few minutes. If the phenomenon |
|        |                    | repeats check the air vents and the operation of the fans.       |
| 4      | IGBT Error (FAULT) | Contact the assistance                                           |
| 5      | Precharge error    | Check the precharge relay.                                       |
| 6      | Current limitat    | Check the load or the parameters settings.                       |
| 7      | NTC error          | Contact the assistance.                                          |
| 8      | CKS error          |                                                                  |
| 9      |                    |                                                                  |
| Α      |                    |                                                                  |
| В      |                    |                                                                  |
| С      |                    |                                                                  |
| D      |                    |                                                                  |
| Е      | Feedback error     |                                                                  |
| 0      | Slave T.OUT        |                                                                  |

If the fault remains, contact the assistance.



MUGL Page 25 of 51 rev. 04 February 2015

# 7. Converter diagram



Functional diagram Power supply/load section



# 8. Control system

The power supply is equipped with a sophisticated digital control system, which has to keep the voltage and/or the current output constant regardless of load change and mains variations.

The regulation is based on two PID algorithms in sequence and named:

"Internal" with feedback from internal current,

"External" with feedback from the output voltage.

The following figure shows the principle of operation



### 9.1 Control system block diagram

The control loops are pre-adjusted in production to achieve a good compromise between speed and stability for most loads, in some cases it is necessary to modify some parameters for the following reasons:

- Oscillations due to a load too reactive
- To enhance the generator dynamic performance
- To adapt the generator to the load



MUGL Page 27 of 51 rev. 04 February 2015

#### 9.2 Control system description

The control system is based on two PID loops in sequence, named "Internal" and "External".

The internal loop is the fastest and regulates the current in the load. It takes input the external loop reference properly adapted by the current regulation.

The external loop regulates the output voltage, reacts more slowly and provides the value of current to the internal loop. It takes at the input the main reference and the feedback comes from the output voltage of the power supply.



External loop





#### Internal loop

#### 9.3 Parameters definition and function

#### *Kp:* range 0 ÷ 10000

It's the proportional gain of the regulation loop (it causes the output to change according to the input error)

#### *Ti:* range $dt \div 32000 \mu$ S; 0 = integral disabled

It's the integration time of the regulation loop in microseconds, can be applied directly or multiplied by the parameter Kp (causes the output to change with a speed proportional to the error, sets the regulation point canceling out the offset).

#### *Td:* range $dt \div 32000 \mu$ S; 0 = derivative disabled

It's the derivative time of the regulation loop in microseconds, can be applied directly or multiplied by the parameter  $K_p$  (causes the output to change proportionally to the rate of change of the input, reduces the system response time).

#### dt machine cycle time not changeable.

**Positive integral limitation:** range 0 ÷ 100% It's the maximum value the variable integral can take

Negative integral limitation: range 0 ÷ 100%

It's the minimum value the variable integral can take



MUGL Page 29 of 51 rev. 04 February 2015

Positive derivative limitation: range 0 ÷ 100% It's the maximum value the variable derivative can take

**Negative derivative limitation:** range 0 ÷ 100% It's the minimum value the variable derivative can take

#### F.F. Feed forward range 0 ÷ 20

It's the anticipation value on the current output, is used to speed the voltage recovery during the load variations. When a load variation happens, there will be a little trough in voltage before to get the stabilized value. This duration can be modified by modifying the F.F.

#### 9.4 Fine-tuning procedure for the control system

Note: To change the control parameters it's necessary to have a PC connected to the serial port of the console and the software program "PWMutil". (Look at paragraph "PWMutil software")

The following paragraph provides only a guide for the fine tuning of the PID regulation loops since in many cases a unique rule it's not applicable and regulations are made on the bases of personal experience.



Note: Eventual parameters modifications must be done by specialized personnel only because these modifications could cause malfunctions and/or generator damages.



Note: Before making any change to the regulation parameters it's advisable to take note of the existing parameters so to restore the initial setup.

In most cases, in particular when the equipment must be adapted to the load, it's sufficient to make slight changes to some parameters following simple rules:

In case of sever capacitive load, lower the Kp coefficients and increase the integration time Ti.

In case of sever inductive load, increase the Kp coefficients and lower the integration time Ti.



MUGL Page 30 of 51 rev. 04 February 2015

#### 9.5 Technique for fine tuning the loops

The fine tuning of the PID loops must be done in two phases, first the internal one and then the external.

In order to fine tune and verify the dynamic performances of the generator, it's better to set the references with an external generator connected to the proper input, using a square waveform with the following parameters:

Frequency > 0 < 50Hz Amplitude  $0 \div V < 5V$ or have an external dynamic load

Under these conditions freeze the external loop and adjust the parameters *Kp*, *Ti* and *Td* of the internal loop to get maximum performance.

Once the internal loop has been fine tuned, the parameters *Kp*, *Ti* and *Td* of the external loop can be adjusted so to optimize the global performance.

Ideal system response to a step function





Step function response varying Kp with Ti constant



Step function response varying Ti with Kp constant





Step function response with Kp too high



Step function response with Kp and Ti too small



MUGL Page 33 of 51 rev. 04 February 2015

# 9. PWMutil Software

The "PWMutil" software is compatible with WINDOWS XP systems and allows to set up some important parameters of the power supply; it must be installed on a suitable PC and executed.

Such software is designed to set up the parameters of different equipment types we produce, therefore it's possible that are displayed some parameters that have no function for this specific power supply.

Connection to a PC

The equipment must be connected to the PC trough the serial port of the console by means of the specific cable.

After the connection has been done and the program PWMutil is executed, the following mask will appear:





MUGL Page 34 of 51 rev. 04 February 2015

By means of the menu "Set" it's possible to select the parameters for the serial link: PC port and baud-rate. In this case the baud-rate must be <u>9600</u>

Enter the following parameters in position "2":

- "Device Address": serial address of the power supply
- "DSP Address": serial address of the power module (if more power modules are present: 1 for module 1, 2 for module 2, etc..; in case of one module only, enter 1)

Once the parameters have been set-up as shown above, push the button "Connect" to start the connection.

In this situation the mask will appear as shown above and it's possible:

- display the machine state with the readings of Output voltage, Output current, Output Power, AC mains voltage, DC BUS voltage, temperature of heat sink and the state of the alarms. With the RESET button it's possible to reset some stored alarms.
- In quadrant 1 appear the box "Enabe control panel", if checked is possible to set parameter in the appropriate boxes. In this mode the front panel indicate always OFF and all other controls (front panel, analog input, ecc) are disabled.
- Set the device Date and Time by double-click on "Time" numbers.
- If there are errors stored in the error log, show the error log by double-click on error log number.

| PowOn -> Date & Time         | Dev | Error | Meaning            | 2 |
|------------------------------|-----|-------|--------------------|---|
| 50 -> 00/00/00 00:05:40:0502 | 00  | 0007  | NTCError           |   |
| 49 -> 00/00/00 00:03:40:0047 | 00  | 0002  | DC UnderVoltage    |   |
| 48 -> 00/00/00 00:06:19:0353 | 00  | 0002  | DC UnderVoltage    |   |
| 46 -> 00/00/00 01:51:52:0329 | 00  | 0002  | DC UnderVoltage    |   |
| 44-> 00/00/00 00:00:41:0825  | 00  | 0002  | DC UnderVoltage    |   |
| 43-> 00/00/00 00:00:04:0325  | 00  | 0002  | DC UnderVoltage    |   |
| 42-> 00/00/00 00:00:20:0321  | 00  | 0002  | DC UnderVoltage    |   |
| 40-> 00/00/00 00:03:27:0390  | 00  | 0002  | DC UnderVoltage    |   |
| 34-> 00/00/00 00:07:53:0085  | 00  | 0002  | DC UnderVoltage    |   |
| 29 -> 00/00/00 00:02:54:0534 | 00  | 0002  | DC UnderVoltage    |   |
| 28-> 00/00/00 00:02:15:0603  | 00  | 0002  | DC UnderVoltage    |   |
| 27 -> 00/00/00 04:02:18:0540 | 00  | 0002  | DC UnderVoltage    |   |
| 27-> 00/00/00 03:06:23:0274  | 00  | 0004  | HW-Fault1          |   |
| 26 -> 00/00/00 00:03:58:0085 | 00  | 0002  | DC UnderVoltage    |   |
| 25 -> 00/00/00 00:13:44:0195 | 00  | 0002  | DC UnderVoltage    |   |
| 24-> 00/00/00 01:09:36:0237  | 00  | 0002  | DC UnderVoltage    |   |
| 23-> 00/00/00 01:05:27:0116  | 00  | 0002  | DC UnderVoltage    |   |
| 20 -> 00/00/00 00:03:48:0191 | 00  | 0002  | DC UnderVoltage    |   |
| 19-> 00/00/00 00:04:19:0598  | 00  | 0002  | DC UnderVoltage    |   |
| 18 -> 00/00/00 00:06:51:0585 | 00  | 0002  | DC UnderVoltage    |   |
| 17-> 00/00/00 00:57:42:0411  | 00  | 0002  | DC UnderVoltage    |   |
| 17-> 00/00/00 00:01:04:0783  | 00  | 0029  | Current Limit 3    |   |
| 17-> 00/00/00 00:01:04:0746  | 00  | 0028  | Current Limit 2    |   |
| 17 -> 00/00/00 00:01:04:0711 | 00  | 0027  | Current Limit 1    |   |
| 17-> 00/00/00 00:01:04:0674  | 00  | 0006  | Current Limitation |   |

Each row shows:

PowerOn: a counter incremented oh each power-on of the device.

Date and Time: Internal date and time (start from 0 on each power-on, can be set as described above.

Dev: Reserved for future use.

Error: Error code.

Meaning: error code meaning.

It is also possible to save the log on a file. By pressing the CLEAR button, the log can be deleted.



- Mode selector: use of the internal reference generator or external reference "booster mode" as described in 6.4
- Range selector: allows to select the working scale (present only in 2 scale devices).
- Subdevices status: in some devices indicate the number of power modules (5 in this case) and which of them are ONLINE (4 & 5 in this example).

By means of the menu button "PIDs parameter" to step into the next mask where the PWM parameters are shown and could eventually be changed.

|                        |                                                                           | dt = 29 usec                       | [ |
|------------------------|---------------------------------------------------------------------------|------------------------------------|---|
| External PID           | Ті/Td * КР Г<br>Ті (usec) 200                                             | Derivative ERR<br>Td (usec) 250    |   |
| Internal PID           | MIN% 100 MAX% 100                                                         | MIN% 100 MAX% 100                  |   |
|                        | Ti/Td*KP □                                                                | Derivative ERR                     |   |
| KP 50                  | Ti (usec)         200           MIN%         100         MAX%         100 | Td (usec) 300<br>MIN% 100 MAX% 100 |   |
| FeedFor <del>w</del> . | 0                                                                         | BEERESH                            |   |

The sampling timing "dt" is shown at point "1".

In order to change any parameter just overwrite it and press ENTER on the keyboard. The button "REFRESH" provides an over-reading of the parameters stored in the memory module.



Warning: in case of more power modules, the regulation parameters must be the same for each module.



MUGL Page 36 of 51 rev. 04 February 2015

### Subdevices menù

In some devices, the main menu has "SUBs" page:

| SubDevices                       |  |
|----------------------------------|--|
| Pids                             |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
| 4 On Board 1402 FW vers. 351     |  |
| AC Volt. Temp. 25 Pll Lock.      |  |
| DC Volt. 390 Ready               |  |
|                                  |  |
| 5 Un Board   1402 FW vers.   351 |  |
| AC Volt. 0 Temp. 25 Pll Lock. 0  |  |
| bo tok. [330] Heady              |  |

There are status indication, temperature and voltages for each one (only the online).



MUGL Page 37 of 51 rev. 04 February 2015

By click on the "Pids" menu in this page:

| a PIDs                                                           |
|------------------------------------------------------------------|
| Range 1                                                          |
| Internal PID<br>KP(0-255) 222 Ti (0-3) 3 Td(n*1000)+(0-255) 3200 |

Here is possible to change the PID parameters, for all subdevices in the same time. If there are parameter difference between Subs, due to communication error or by individual setting using "APWM" utility, the value background is RED and by doubleclick on the field, the individual value are shown. Writing a value should solve the issue.



MUGL Page 38 of 51 rev. 04 February 2015

# 10. AL Manager software

The "AL Manager" software allows total control of up to 32 power supplies AL3000 series.

#### 10.1 Software installation

The "AL Manager" software is compatible with Windows XP, Windows Vista, Windows 7, Windows 8 in both 32bit and 64bit versions. It is supplied in a single install package. The installation is simple. Just click on the install package, accept the license agreement terms and select the install path.



Note: Some operating systems can request to confirm the software installation. Simply press on **Continue** or **OK** button when the alert message appear.



Note: ZENONE ELETTRONICA disclaims any liability for incompatibilities or conflicts with other software and operating systems.



Note: Some operating systems maybe need to run software with the Administrator Rights.

#### 10.2 Run software



Click on the AL Manager icon on desktop or in the Start Menu to run software after the installation.

At the first start, the software shows the language select window. Choose the language and click on the OK button.



#### MUGL Page 39 of 51 rev. 04 February 2015

| L Manager                                              |                                        | 🔳 🖬 🕨                                       |
|--------------------------------------------------------|----------------------------------------|---------------------------------------------|
|                                                        | RONICA<br>MAZIONE                      | Select a device and choose an operation     |
| Select the desired setting                             | s for the serial port                  | Edit Address                                |
| Com Port                                               | 💌 Baud Rate 9600 💌 Timeout (sec) 쉬 5,0 | Select a device and insert the new address. |
| Constitution in the second                             |                                        | None New Address 🖞 1                        |
|                                                        | Tepecciu                               | 1                                           |
| the connected devices.<br>Start address 1<br>Generator | Address 🔺 Search                       | AL Manager                                  |
|                                                        | 7                                      |                                             |
| 1                                                      |                                        |                                             |
|                                                        |                                        |                                             |

**English** and **Italian** language is directly integrated into the install package. Other languages can be available in the future. Each language refers a file which contains all strings used by software and has a version number. For the AL Manager v1.3 language version **1.7** or greater is required.

The new language is directly applied without software restart.

To change language other times press Language button in the top of the window.

To connect to AL serial port a serial cable is needed. For information about cable and connection refer to **External Connection** section.

Select a **Com Port** from top down menu. If com port is not listed, select **Refresh** and click again on the field. Now the port maybe appears in the list. Set baud rate to **9600bps** and timeout to **5sec**. If connection appears instable or have more delay, try to increase timeout.

After this setting, the **Start Communication** button becomes active. Press the button to connect to the serial port. A green indicator on the right informs that the communication has started. The communication could be started and stopped without any problem independently from the number of control instances currently opened.

When connect to first time, software start to search the connected devices on the serial bus and show in the list name, S/N and address of the founded generators. Up to **32 devices** could be connected and used with this software with single Com Port.



Note: More than one kind of generators could be founded in this operation, but only AL could be used with this software.



MUGL Page 40 of 51 rev. 04 February 2015

It is possible to start manually search of generators by simply clicking on **Search** button near the list. During searching that button become **Stop** and, if pressed, stop the search. In the **Start address** field is possible to set from which address start searching and the **Actual** field show the address actually scanned.

| 😰 AL Manager                                                                       |                                             |
|------------------------------------------------------------------------------------|---------------------------------------------|
| ZENONE ELETTRONICA<br>AUTOMAZIONE<br>STRUMENTAZIONE                                | Select a device and choose an operation     |
| Select the desired settings for the serial port                                    | Edit Address                                |
| Com Port COM1 Baud Rate 9600 Timeout (ser)                                         | Select a device and insert the new address. |
|                                                                                    | None New Address A                          |
| Stop Communication                                                                 |                                             |
|                                                                                    | APPLY                                       |
| Click on Search button to analyze the serial Bus to find<br>the connected devices. |                                             |
| Start address $\frac{r}{\tau}$ 1                                                   |                                             |
| Generator Address A Search Actual 2                                                |                                             |
| AL3000 800V 10kW - 1477 1                                                          |                                             |
|                                                                                    | Al Manager                                  |
|                                                                                    |                                             |
|                                                                                    | AL3000 800V 10kW - 1477   1                 |
|                                                                                    |                                             |
|                                                                                    |                                             |
|                                                                                    |                                             |
|                                                                                    |                                             |
|                                                                                    |                                             |

#### 10.3 Change address

After scan it is possible to choose the founded generators from the top down menu on the left. **Edit Address** section allow to change the address to AL. Simply select the generator from the menu, set **new address** and click on **Appl**y button. After operation a popup inform that the operation is completed and automatically restart search.



Note: If there is more than one generator on the serial bus with the same address, no one is recognized during search. Ensure that all generator connected to the bus have different address. Is possible to connect generator one by one to the bus and change it address in as described here.



MUGL Page 41 of 51 rev. 04 February 2015

#### 14.4 Remote control

Now is possible to launch the control software. Select the generator from the menu in the **AL Manager** section and press **Launch** >> button.

| 🖻 AL3000 800V 10kW - 1477   1         | A new window is                                                                                                         |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Data acquisition in progress Progress | open and software<br>starts to acquire<br>data from the AL<br>to configure all<br>software<br>parameters and<br>option. |
|                                       | At the end of this<br>step the main<br>window of the<br>manager appear.                                                 |
| Communication Reset                   |                                                                                                                         |



On the title bar appear the name, serial number, address and various operating mode and state of the AL. This is important when several generator are connected and used simultaneously because allow to identify correct instance directly from the name.

**Voltage** and **Current** red field show the value of the generator output. The on-screen knob allow to set voltage and current if the relative **Source** is set to **Serial**. Check the option **Automatic Write** to apply new value directly when move the knob. If this option



MUGL Page 42 of 51 rev. 04 February 2015

is unchecked, for apply the new value, click in the numeric field under knob and press **Enter**. This function is active too when Automatic Write is enabled.

When the source is set to Panel or Analog Input (AI) the knob and the field is disabled.

The **Start** and **Stop** button works in the same way. Only when the **Source** is defined **Serial** is possible to start and stop from AL Manager. Other options are from **Panel** or via **Digital input**.

**State Field** shows the status of the AL. Possible indications are:

- Halt: AL is in stop mode;
- **Running:** AL is running ;
- Fail: Error or malfunction.

Under this box could be present some additional description like:

- Run disabled: An external enable signals is not present. AL cannot start;
- Slave mode: AL is in Slave mode, which mean that is connected and driving by another Master AL. In this mode no operation is allow, and AL manager only show the status and the output value. All command are disabled;
- **Current mode:** AL is running in Current Control Mode;
- **Power Limitation Mode:** Al is running in Power limitation;

This description and status is reported in the title bar too.

The **Device Connected Info** buttons show a window with different information about AL such as FW version, Serial number and DSP Firmware Version.

Near each field or control there are one or two green indicators that show the status of reading or writing operation for those parameters. When indicator is on the read or write is done successfully. For hide this indicators uncheck the option **Show Read/Write Status Indicator**.

Is possible to set two kind of erogation: **Normal** and a **Linear Ramp**. To set normal mode set None in the ramp field. AL instantaneously gives the settled voltage to the output. If **Linear Ramp** is selected AL will reach the settled voltage in the settled **Time (ms)**.

Is possible to set an internal resistance in the range **0**÷1000mOhm. For this value is possible to define the source of reference. If serial is selected, the value can be directly inserted by Al Manager. If **0ohm** is settled, no resistance is applied on the AL. In the other way is possible to drive this value from analog input, and in this case, is possible to define the operating range of the analog input. **AN-min** and **AN-max** field set respectively the minimum and maximum resistance correspond to minimum and maximum voltage value on the analog input. This field is only editable when Source is defined like analog input.

Max Power field allow setting a limit for the power generated by AL. The range go from zero to maximum power of the AL. Source option allow to give this value from Serial, analog input or to set it to Max.

Max Absorbed Current set the current limit when the AL is in regeneration mode. Max Output Current set the limit of the output current.



MUGL Page 43 of 51 rev. 04 February 2015



•

Note: Simply click Enter in all numeric fields to apply the value. The right green indicator turn on when write success.

**DSP** button open a window that show the status of the DSP controller of the AL. In it is possible to see a more detailed explanation of alarm and errors, version of the DSP firmware and current operating status.

| DSP1004              | <b>X</b>          |
|----------------------|-------------------|
| DSP                  | FW Version 138    |
| Stop -               | Run Disabled      |
| Alarm Monitoring     |                   |
| DC Overvoltage 🛷     | AC Overvoltage 💉  |
| DC Undervoltage 💉    | AC Undervoltage 🛷 |
| Overtemperature 🞺    | High Frequency 🞺  |
| Fault 💉              | Low Frequency 🞺   |
| Precharge 💉          | Zero-crossing 🛷   |
| Current Limitation 🛷 | Feedback Error 🛷  |
| итс 🥴                | DSP610 Timeout 💉  |
| CheckSum 💉           |                   |
|                      | 💈 Refresh         |

A description of that error could be finding in the **Error and Fault Signals** Section.

Show Main button show the start window of the AL manager.

**Communication** indicator shows the status of communication with AL. If green is OK but if it is red could be some communication error that could be fixed pressing **Reset** button.

**Refresh** button allow to read all parameters in window in a single time. Is possible to call this function with F5 button too.



MUGL Page 44 of 51 rev. 04 February 2015

# 11. Communication protocol

#### Communication protocol

It's possible to communicate with the device (send commands and get replies) by means of the RS485 serial interface, according to a half-duplex communication protocol. The settings of the communication port is:

| Device address: | from 1 to 32 | (assigned with appropriate software) |
|-----------------|--------------|--------------------------------------|
| Baud-rate:      | 9600 b/s     |                                      |
| Number of bits: | 8            |                                      |
| Stop bit:       | 1            |                                      |
| Parity:         | None         |                                      |

Each command and each reply are preceded by a start (STX) and the address (IND) of the device we intend to communicate with, followed by a stop (ETX) and a checksum (CKSUM) for the data correctness verification.

#### STX IND Command or reply ETX CKSUM

| сту   | _ | Start character Hevadecimal value 0x02                                   |
|-------|---|--------------------------------------------------------------------------|
| 217   | - |                                                                          |
| IND   | = | Device address, added to the hexadecimal value 0x80                      |
|       |   | (ex. Address 1 = character 0x81)                                         |
| ETX   | = | Stop character, Hexadecimal value 0x03                                   |
| CKSUM | = | Control checksum, it's a character sum of all characters of the command, |
|       |   | Inclusive of STX and ETX characters, module 256.                         |

Each command that carries a parameter receives a reply with a result character (ESI) that can have the following values:

"0" = Command executed. "1" = Command not executed.



#### General information commands and device options

Device serial number request

 Command
 Reply

 0x10
 "S"

 0x10
 "S"

Device firmware version request

| Command  | Reply |                             |
|----------|-------|-----------------------------|
| 0x10 "F" | 0x10  | <b>"F"</b> Firmware version |

Device name request

Г

| Command  | Reply                |
|----------|----------------------|
| 0x10 "N" | 0x10 "N" Device name |

Request and setting device setup mode

| Command<br>0x10 "M"                                                                              | Reply<br>0x10 "M | Setup mode      |                           |
|--------------------------------------------------------------------------------------------------|------------------|-----------------|---------------------------|
| Command Ox11 "M" Setup mode setting                                                              |                  |                 | Reply<br>0x11 "M" ESI     |
| "0"       Setup and start from panel         "1"       "2"         "3"       "3"                 |                  |                 |                           |
| "4" Setup and external start<br>Note: In case of remote mode (lool<br>effect only for the start. | k at appropri    | ate command 0x1 | 15 "M"), this command has |



MUGL Page 46 of 51 rev. 04 February 2015

# Commands for test main setup

Request and setting voltage value

| Command<br>0x12 "M" IDX                                    | Reply if IDX ok<br>0x12   "M" | IDX UMI   | IS Voltage value * |  |
|------------------------------------------------------------|-------------------------------|-----------|--------------------|--|
|                                                            | Reply if IDX not              | ok<br>ESI |                    |  |
| Command<br>0x13 "M" IDX UMIS Volta                         | ge value *                    |           | Reply              |  |
| <b>IDX</b> = 0x81 (Fixed value)                            |                               |           |                    |  |
| UMIS = "1" (Fixed value)                                   |                               |           |                    |  |
| * For the allowed ranges refer to equipment specifications |                               |           |                    |  |

### Request and setting current value

| Command                                                    | Reply if DX OK                   |                     |                 |     |
|------------------------------------------------------------|----------------------------------|---------------------|-----------------|-----|
| 0x12 "E" IDX                                               | 0x12 "E" I                       | DX UMIS             | Current value * |     |
|                                                            | Reply if IDX not<br>0x12  "E"  E | t OK<br>E <b>SI</b> |                 |     |
| Command                                                    |                                  |                     | Reply           |     |
| Ox13 "E" IDX UMIS Curre                                    | ent value *                      |                     | 0x13  "E"       | ESI |
| IDX = 0x81 (Fixed value)                                   |                                  |                     |                 |     |
|                                                            |                                  |                     |                 |     |
| * For the allowed ranges refer to equipment specifications |                                  |                     |                 |     |



MUGL Page 47 of 51 rev. 04 February 2015

# Request and sending Range

| Comm | nand  |         |                | Reply |     |                  |              |
|------|-------|---------|----------------|-------|-----|------------------|--------------|
| 0x12 | "W"   |         | 0x12           | "W"   | IDX | Range "1" or "2" |              |
|      |       |         |                |       |     |                  |              |
| Comm | nand  |         |                |       |     |                  | Reply        |
| 0x13 | "W"   | IDX     | Range "1" or " | 2"    |     |                  | 0x13 "W" ESI |
| IDX  | = 0x8 | 81 (Fi) | ked value)     |       |     |                  |              |

### Request and setting maximum power value

| Command<br>Ox12 "X2"                    | Reply Ox12 "X2" Power |
|-----------------------------------------|-----------------------|
| Command<br>Ox13 "X2" Power              | Reply<br>0x13 ESI     |
| Power is in Watt from: 0 to Full Scale. |                       |
|                                         |                       |

### Request and setting internal resistance

| Command<br>Ox12 "X1"                   | Reply<br>0x12 "X1" Resistor |
|----------------------------------------|-----------------------------|
| Command<br>0x13 "X1" Resistor          | Reply                       |
| Resistor is in Ohm from: 0.001 to 1000 |                             |



# Request end sending RAMP timing

| Comm                     | and   | Reply if IDX OK |       |      |                      |                           |               |      |      |           |     |     |
|--------------------------|-------|-----------------|-------|------|----------------------|---------------------------|---------------|------|------|-----------|-----|-----|
| 0X12                     |       | IDX             |       |      | 0X12                 |                           | IDX           | UWIS | RAMP | timing (n | ns) |     |
|                          |       |                 |       |      | Reply<br><b>0x12</b> | if IDX r<br>  <b>"T</b> " | not OK<br>ESI | ]    |      |           |     |     |
| Comm                     | and   |                 |       |      |                      |                           |               |      |      | Re        | ply |     |
| 0x13                     | "T"   | IDX             | UMIS  | RAMP | timing               | g (millis                 | second        | s)   |      | 0x13      | "T" | ESI |
| IDX = 0x81 (Fixed value) |       |                 |       |      |                      |                           |               |      |      |           |     |     |
| UMIS                     | = "0" | ' (Fixed        | value |      |                      |                           |               |      |      |           |     |     |

# Request and sending Ramp mode

| Command<br>Ox12 "R" IDX         | Reply if IDX OK<br><b>0x12 "R" IDX</b> Mode |                       |
|---------------------------------|---------------------------------------------|-----------------------|
|                                 | Reply if IDX not OK<br>0x12  "R" ESI        |                       |
| Command<br>Ox13 "R" IDX Mode    |                                             | Reply<br>Ox13 "R" ESI |
| <b>IDX</b> = 0x81 (Fixed Value) |                                             |                       |
| Mode                            |                                             |                       |
| " <b>0</b> " No ramp            |                                             |                       |
| "1" Linear ramp                 |                                             |                       |



MUGL Page 49 of 51 rev. 04 February 2015

### Commands for reading the actual values

Reading the actual state

| Comm<br>0x14 | and Reply<br>"E" 0x14         | "E" | State or test result |
|--------------|-------------------------------|-----|----------------------|
| Test st      | tate                          |     |                      |
| "0"          | Halt                          |     |                      |
| "1"          | Running                       |     |                      |
| "2"          |                               |     |                      |
| "3"          |                               |     |                      |
| "4"          |                               |     |                      |
| "5"          |                               |     |                      |
| "6"          | Fail (failure or malfunction) |     |                      |
| "7"          |                               |     |                      |
| "A"          |                               | ]   |                      |

### Reading the actual voltage

| Command<br>0x14 "M" | Reply 0x14 | "M" | UMIS | Actual value |  |
|---------------------|------------|-----|------|--------------|--|
| UMIS                |            |     |      |              |  |
| "0"                 | Millivolt  |     |      |              |  |
| "1"                 | Volt       |     |      |              |  |
|                     | I          |     |      |              |  |

### Reading the actual current

| mmand<br><14   "S" |                   | <u>"S"</u>                           | UMIS                                            | Actual value                                    |                                                 |
|--------------------|-------------------|--------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
| Millivolt          | Milliamporo       |                                      |                                                 |                                                 |                                                 |
| Volt               | Ampere            |                                      |                                                 |                                                 |                                                 |
|                    | Millivolt<br>Volt | Millivolt Milliampere<br>Volt Ampere | Millivolt     Milliampere       Volt     Ampere | Millivolt     Milliampere       Volt     Ampere | Millivolt     Milliampere       Volt     Ampere |



#### MUGL Page 50 of 51 rev. 04 February 2015

| Command<br>0x14 "L"                                                                                                                         | Reply     0x14   "L"                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Connection state<br><b>"L"</b> Not ACTIVE<br><b>"R"</b> Active                                                                              |                                                                                                                                                               |
| Test Start and Stop command                                                                                                                 | <u>s</u>                                                                                                                                                      |
| Enables remote mode                                                                                                                         |                                                                                                                                                               |
| Command<br><b>0x15</b> "M" Mode                                                                                                             | Reply<br>0x15 "M" ESI                                                                                                                                         |
| Remote mode"L"Not active"R"Active                                                                                                           |                                                                                                                                                               |
| In "Remote" mode the output valu<br>SERIAL link or from PANEL/EXTERN<br>(0x11 "M").                                                         | es are defined via SERIAL link. The start can be given from<br>AL according to the appropriate command                                                        |
| Supply start                                                                                                                                |                                                                                                                                                               |
| Command<br>0x15 "R"                                                                                                                         | Reply<br>0x15 "R" ESI                                                                                                                                         |
| <b>Note:</b> It's possible to start the sup<br>PANEL/EXTERNAL.<br>The positive result of the comman<br>has taken place, it's necessary to p | ply only if in remote mode and start from selected<br>d means that it was accepted but, in order to be sure the start<br>read the device state (Command 14E). |
| Supply stop                                                                                                                                 |                                                                                                                                                               |
| Command<br>0x15 "S"                                                                                                                         | Reply<br>0x15 "S" ESI                                                                                                                                         |
| <b>Note:</b> It's possible to stop the support PANEL/EXTERNAL.<br>The positive result of the commany has taken place, it's necessary to p   | bly only if in remote mode and stop from selected<br>d means that it was accepted but, in order to be sure the stop<br>read the device state (Command 14E).   |
| Address assignment                                                                                                                          |                                                                                                                                                               |
| Command<br>0x15 "A" IND                                                                                                                     | Reply<br>0x15 "A" ESI                                                                                                                                         |



MUGL Page 51 of 51 rev. 04 February 2015

Request and setting reference sources.

| Com                                            | mand                                                                      |                          |                                                                    |                                                                             | Reply                                                                                 |                             |
|------------------------------------------------|---------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------|
| 0x20                                           | 0 "C" RIF                                                                 | 0x20 "C"                 | 'RIF SR                                                            | С                                                                           |                                                                                       |                             |
|                                                |                                                                           | Reply if RI<br>0x20  "C" | F not OK<br>' ESI                                                  |                                                                             |                                                                                       |                             |
| Command                                        |                                                                           |                          | Reply                                                              |                                                                             |                                                                                       |                             |
| 0x2                                            | 1    "C"                                                                  |                          |                                                                    | 0x21                                                                        | "C" ESI                                                                               | RIF2                        |
|                                                |                                                                           |                          |                                                                    |                                                                             |                                                                                       |                             |
| Refe<br>RIF                                    | erence values and associa                                                 | ted source               |                                                                    | SRC                                                                         |                                                                                       |                             |
| Refe<br>RIF                                    | erence values and associa                                                 | ted source               | "0"                                                                | SRC<br>"1"                                                                  | "2"                                                                                   | "3"                         |
| Refe<br>RIF<br>"0"                             | erence values and associa                                                 | ted source               | <b>"0"</b><br>Pot. 1                                               | SRC<br>"1"<br>Input AN1                                                     | <b>"2"</b><br>From serial                                                             | <b>"3"</b><br>Booster       |
| Refe<br>RIF<br>"0"<br>"1"                      | Prence values and associa<br>Voltage<br>Current                           | ted source               | <b>"0"</b><br>Pot. 1<br>Pot. 2                                     | SRC<br>"1"<br>Input AN1<br>Input AN2                                        | <b>"2"</b><br>From serial<br>From serial                                              | <b>"3"</b><br>Booster       |
| Refe<br>RIF<br>"0"<br>"1"<br>"2"               | Prence values and associa<br>Voltage<br>Current<br>Source of START        | ted source               | " <b>0</b> "<br>Pot. 1<br>Pot. 2<br>Panel                          | SRC<br>"1"<br>Input AN1<br>Input AN2<br>Input IN1                           | <b>"2"</b><br>From serial<br>From serial<br>From serial                               | " <b>3</b> "<br>Booster<br> |
| Refe<br>RIF<br>"0"<br>"1"<br>"2"<br>"3"        | Voltage<br>Current<br>Source of START<br>Not used                         | ted source               | <b>"0"</b><br>Pot. 1<br>Pot. 2<br>Panel<br>Pot. 2                  | SRC<br>"1"<br>Input AN1<br>Input AN2<br>Input IN1<br>Input AN2              | <b>"2"</b><br>From serial<br>From serial<br>From serial<br>From serial                | <b>"3"</b><br>Booster<br>   |
| Refe<br>RIF<br>"0"<br>"1"<br>"2"<br>"3"<br>"4" | Voltage<br>Current<br>Source of START<br>Not used<br>RESISTANCE reference | ted source               | " <b>0</b> "<br>Pot. 1<br>Pot. 2<br>Panel<br>Pot. 2<br>Fixed 0 ohm | SRC<br>"1"<br>Input AN1<br>Input AN2<br>Input IN1<br>Input AN2<br>Input IN1 | <b>"2"</b><br>From serial<br>From serial<br>From serial<br>From serial<br>From serial | "3"<br>Booster<br>          |

**Note:** This command **ESI** can take also value "2". In this case means that SRC you want to use is already used by the reference RIF2. The command is NOT accepted in "Running" status.